SVM
May 2007
DOE-PI
Dianne P. O'Leary
©2007

Speeding the Training of Support Vector Machines and Solution of Quadratic Programs

Dianne P. O'Leary

Computer Science Dept. and Institute for Advanced Computer Studies University of Maryland

Jin Hyuk Jung
Computer Science Dept.

André Tits

Dept. of Electrical and Computer Engineering and Institute for Systems Research

Work supported by the Department of Energy.

The Plan

- Very brief overview of our work
- Introduction to SVMs
- Our algorithm
- Examples

Our DOE-supported research program

Goal: Develop efficient algorithms for optimization problems having a large number of inequality constraints.

Example applications:

- Semi-infinite programming: problems with pde constraints.
- Training support vector machines.

Progress:

- Efficient implementation of an interior point method (IPM) for solving linear programs on a GPU (= graphical processing unit).
 (Jung, O'Leary) (poster)
- Adaptive constraint reduction algorithms for linear (poster) and quadratic programming problems.
 (Stacey Nicholls, Luke Winternitz, Jung, O'Leary, Tits)
- Simple conditions on the "constraint matrices" and cone for a pair of dual conic convex programs, under which the duality gap is zero for every choice of linear objective function and "right-hand-side". (Simon Schurr, O'Leary, Tits)
- Convex duality and entropy-based closure in gas dynamics.
 (Cory Hauck, Tits, David Levermore) (poster)
- A polynomial-time interior-point method for conic optimization, with inexact barrier evaluations. (Schurr, O'Leary, Tits) (poster)
- SVM training (Jung, O'Leary, Tits) (this talk)

The problem

Given: A set of sample data points \mathbf{a}_i , in sample space \mathcal{S} , with labels $d_i = \pm 1, \ i = 1, \dots, m$.

Find: A hyperplane $\{\mathbf{x}: \langle \mathbf{w}, \mathbf{x} \rangle - \gamma = 0\}$, such that

$$sign(\langle \mathbf{w}, \mathbf{a}_i \rangle - \gamma) = d_i,$$

or, ideally,

$$d_i(\langle \mathbf{w}, \mathbf{a}_i \rangle - \gamma) \ge 1.$$

Which hyperplane is best?

We want to maximize the separation margin $1/||\mathbf{w}||$.

Generalization 1

We might map a more general separator to a hyperplane through some transformation Φ :

For simplicity, we will assume that this mapping has already been done.

Generalization 2

If there is no separating hyperplane, we might want to balance maximizing the separation margin with a penalty for misclassifying data by putting it on the wrong side of the hyperplane. This is the soft-margin SVM.

• We introduce slack variables $y \ge 0$ and relax the constraints $d_i(\langle \mathbf{w}, \mathbf{a}_i \rangle - \gamma) \ge 1$ to

$$d_i(\langle \mathbf{w}, \mathbf{a}_i \rangle - \gamma) \ge 1 - y_i.$$

ullet Instead of minimizing $\|\mathbf{w}\|$, we solve

$$\min_{\mathbf{w},\gamma,\mathbf{y}} \frac{1}{2} \|\mathbf{w}\|_2^2 + \tau \mathbf{e}^T \mathbf{y}$$

for some $\tau > 0$, subject to the relaxed constraints.

Classifier $\langle \mathbf{w}, \mathbf{x} \rangle - \gamma = 0$: black line

Boundary hyperplanes: dashed lines

 $2 \times \text{separation margin: length of arrow}$

Support vectors: On-Boundary (yellow) and Out-of-Bound (green)

Non-SV: blue

Key point: The classifier is the same, regardless of the presence or absence of the blue points.

More jargon

- ullet The process of determining w and γ is called training the machine.
- After training, given a new data point \mathbf{x} , we simply calculate $\operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle \gamma)$ to classify it as in either the positive or negative group.
- This process is thought of as a machine called the support vector machine (SVM).
- We will see that training the machine involves solving a convex quadratic programming problem whose number of variables is the dimension n of the sample space and whose number of constraints is the number m of sample points – typically very large.

Primal and dual

Primal problem:

$$egin{aligned} \min_{\mathbf{w},\gamma,\mathbf{y}} rac{1}{2} ||\mathbf{w}||_2^2 + au \mathbf{e}^T \mathbf{y} \ s.t. \quad \mathbf{D}(\mathbf{A}\mathbf{w} - \mathbf{e}\gamma) + \mathbf{y} \geq \mathbf{e}, \ \mathbf{y} \geq \mathbf{0}, \end{aligned}$$

Dual problem:

$$\max_{\mathbf{v}} -\frac{1}{2}\mathbf{v}^T \mathbf{H} \mathbf{v} + \mathbf{e}^T \mathbf{v}$$

$$s.t. \quad \mathbf{e}^T \mathbf{D} \mathbf{v} = 0,$$

$$\mathbf{0} \le \mathbf{v} \le \tau \mathbf{e},$$

where $\mathbf{H} = \mathbf{D}\mathbf{A}\mathbf{A}^T\mathbf{D} \in \mathbb{R}^{m \times m}$ is a symmetric and positive semidefinite matrix with

$$h_{ij} = d_i d_j \langle \mathbf{a}_i, \mathbf{a}_j \rangle.$$

Support vectors

Support vectors (SVs) are the patterns that contribute to defining the classifier.

They are associated with nonzero v_i .

	v_i	s_i	y_i
Support vector	$[0,\tau]$	0	$[0,\infty)$
On-Boundary SV	$(0,\tau)$	0	0
Out-of-Bound SV	au	0	$(0,\infty)$
Nonsupport vector	0	$(0,\infty)$	0

- v_i : dual variable (Lagrange multiplier for relaxed constraints).
- s_i : slack variable for nonnegativity of v_i ; i.e., $s_i v_i = 0$.
- y_i : slack variable in relaxed constraints.

Solving the SVM problem

Apply standard optimization machinery:

- Write down the optimality conditions for the primal/dual formulation using the Lagrange multipliers. This is a system of nonlinear equations.
- Apply a (Mehotra-style predictor-corrector) interior point method (IPM)
 to solve the nonlinear equations by tracing out a path from a given
 starting point to the solution.

 At each step of the IPM, the next point on the path is computed using a variant of Newton's method by solving the linear system of equations

$$\mathbf{M} \ \Delta \mathbf{w} = \mathsf{some} \ \mathsf{vector}$$

(sometimes called the normal equations), where

$$\mathbf{M} = \mathbf{I} + \mathbf{A}^T \mathbf{D} \mathbf{\Omega}^{-1} \mathbf{D} \mathbf{A} - \frac{\mathbf{d} \mathbf{d}^T}{\mathbf{d}^T \mathbf{\Omega}^{-1} \mathbf{d}}.$$

Here, ${f D}$ and ${f \Omega}$ are diagonal, ${f ar d}={f A}^T{f D}{f \Omega}^{-1}{f d}$, and

$$\omega_i^{-1} = \frac{v_i(\tau - v_i)}{s_i v_i + y_i(\tau - v_i)}.$$

Examining
$$\mathbf{M} = \mathbf{I} + \mathbf{A}^T \mathbf{D} \mathbf{\Omega}^{-1} \mathbf{D} \mathbf{A} - \frac{\bar{\mathbf{d}} \bar{\mathbf{d}}^T}{\mathbf{d}^T \mathbf{\Omega}^{-1} \mathbf{d}}$$

Our approach is to modify Newton's method by using an approximation to the last two terms.

Note that the middle term is

$$\mathbf{A}^T\mathbf{D}\mathbf{\Omega}^{-1}\mathbf{D}\mathbf{A} = \sum_{i=1}^m rac{1}{\omega_i}\mathbf{a}_i\mathbf{a}_i^T.$$

We only include certain terms corresponding to the large values of ω_i^{-1} . We could choose:

- ullet patterns ${f a}_i$ with smallest distance to the class boundary hyperplanes.
- ullet patterns ${f a}_i$ with smallest "one-sided" distance to these hyperplanes.
- patterns with largest ω_i^{-1} .

We could

- ignore the value of d_i .
- balance the number of positive and negative patterns included.

Some related work

- Use of approximations to M in LP-IPMs dates back to Karmarkar (1984), and adaptive inclusion of terms was studied, for example, by Wang and O'Leary (2000).
- Osuna, Freund, and Girosi (1997) proposed solving a sequence of CQPs, building up patterns as new candidates for support vectors are identified.
- Joachims (1998) and Platt(1999) used variants related to Osuna et al.
- Ferris and Munson (2002) focused on efficient solution of normal equations.
- Gertz and Griffin (2005) used preconditioned cg, with a preconditioner based on neglecting terms in M.

Test problems

Provided by Josh Griffin (SANDIA)

Problem	\overline{n}	Patterns $(+, -)$	SV (+,-)	In-bound SVs $(+,-)$
mushroom	276	(4208,3916)	(1146,1139)	(31,21)
isolet	617	(300,7497)	(74,112)	(74,112)
waveform	861	(1692,3308)	(633,638)	(110,118)
letter-recog	153	(789,19211)	(266,277)	(10,30)

The number of iterations was almost constant, regardless of algorithm variant, so we measure time for solution (MATLAB).

We used the balanced selection scheme.

Comparison with other software

Problem	Туре	LibSVM	SVMLight	Matlab	Ours
mushroom	Polynomial	5.8	52.2	1280.7	
mushroom	Mapping(Linear)	30.7	60.2	710.1	4.2
isolet	Linear	6.5	30.8	323.9	20.1
waveform	Polynomial	2.9	23.5	8404.1	
waveform	Mapping(Linear)	33.0	85.8	1361.8	16.2
letter	Polynomial	2.8	55.8	2831.2	
letter	Mapping(Linear)	11.6	45.9	287.4	13.5

- LIBSVM, by Chih-Chung Chang and Chih-Jen Lin, uses a variant of SMO (by Platt), implemented in C
- \bullet SVMLIGHT, by Joachims, implemented in C
- MATLAB's provided program is a variant of SMO.
- ullet Our program is implemented in MATLAB, so we would expect a speed-up if converted to C.

How our algorithm works

To visualize the iteration, we constructed a toy problem with

- n = 2,
- ullet a mapping Φ corresponding to an ellipsoidal separator.

We now show snapshots of the patterns that contribute to ${\bf M}$ as the IPM iteration proceeds.

Iteration: 2, # of obs: 1727

Iteration: 5, # of obs: 1440

Iteration: 8, # of obs: 1026

Iteration: 11, # of obs: 376

Iteration: 14, # of obs: 170

Iteration: 17, # of obs: 42

Iteration: 20, # of obs: 4

Iteration: 23, # of obs: 4

Conclusions

- We have succeeded in significantly improving the training of SVMs that have large numbers of training points.
- Similar techniques apply to general CQP problems with a large number of constraints.
- Savings is primarily in later iterations. Future work will focus on using clustering of patterns (e.g., Boley and Cao (2004)) to reduce work in early iterations.
- We are seeking additional classification problems of interest to DOE.